source("_preloader.r", verbose=T)
######
# Psych - correlate everything to everything w/ t-value
######
out.dir = file.path(resultsDir, "results.03 - 1")
dir.create(out.dir)
#overlapping.norm.glucold = c("hsa-miR-375", "hsa-miR-203a-3p")
overlapping.norm.glucold <- readr::read_csv(
file.path("results.02", "all.limma.meta.analysis.csv")
) %>%
dplyr::filter(meta.p.adj.bh <= 0.05) %>%
dplyr::pull(g.new.id)
PsychMasterTable = miRNASampleTable %>%
tibble::rownames_to_column(
"rowid"
) %>%
dplyr::rename(
Orig.Sample.Id = Sample.Id,
Sample.Id = rowid
) %>%
dplyr::mutate(
Expr.Sample.Id = paste0(
"X",
gsub(
x = Sample.Id,
pattern = "^X|_$",
replacement = ""
)
)
) %>%
dplyr::filter(
Expr.Sample.Id %in% colnames(miRNAGeneExprData)
) %>%
tibble::column_to_rownames("Sample.Id")
snp = miRNAData[
overlapping.norm.glucold,
rownames(PsychMasterTable)
] %>%
tibble::rownames_to_column("snpid")
sign.miRNA.expr.data = snp[snp$snpid %in% overlapping.norm.glucold, ]
sign.miRNA.expr.data.RowNames = sign.miRNA.expr.data$snpid
sign.miRNA.expr.data = sign.miRNA.expr.data %>% dplyr::select(-snpid)
sign.miRNA.expr.data = sign.miRNA.expr.data %>% t() %>% as.data.frame()
colnames(sign.miRNA.expr.data) = sign.miRNA.expr.data.RowNames
ge = limma::voom(miRNAGeneExprData)[, PsychMasterTable$Expr.Sample.Id] %>% as.data.frame()
colnames(ge) = rownames(PsychMasterTable)
mRNA.expr.data = ge %>% tibble::rownames_to_column("geneid")
mRNA.expr.data.RowNames = mRNA.expr.data$geneid
mRNA.expr.data = mRNA.expr.data %>% dplyr::select(-geneid)
mRNA.expr.data = mRNA.expr.data %>% t() %>% as.data.frame()
colnames(mRNA.expr.data) = mRNA.expr.data.RowNames
x1 = sign.miRNA.expr.data
y1 = mRNA.expr.data
cor = psych::corr.test(
x = x1,
y = y1,
method = "pearson",
adjust = "none"
)
r0=cor$r
r0=t(r0)
p0=cor$p
p0=t(p0)
t0=cor$t
t0=t(t0)
mart = useMart(
biomart="ENSEMBL_MART_ENSEMBL",
host="grch37.ensembl.org",
path="/biomart/martservice",
dataset="hsapiens_gene_ensembl"
)
G_list = getBM(
filters = "ensembl_gene_id",
attributes = c(
"ensembl_gene_id",
"hgnc_symbol"
),
values = unique(rownames(r0)),
mart = mart
)
G_list = G_list %>%
dplyr::group_by(ensembl_gene_id) %>%
dplyr::mutate(i = dplyr::row_number()) %>%
dplyr::filter(i == 1) %>%
dplyr::select(ensembl_gene_id, hgnc_symbol) %>%
tibble::column_to_rownames("ensembl_gene_id")
psychTable = r0 %>%
as.data.frame() %>%
tibble::rownames_to_column("row.names") %>%
tidyr::gather(
key = "miRNA.id",
value = "r",
-row.names
) %>%
dplyr::left_join(
y = t0 %>%
as.data.frame() %>%
tibble::rownames_to_column("row.names") %>%
tidyr::gather(
key = "miRNA.id",
value = "t",
-row.names
),
by = c(
"row.names" = "row.names",
"miRNA.id" = "miRNA.id"
)
) %>%
dplyr::left_join(
y = p0 %>%
as.data.frame() %>%
tibble::rownames_to_column("row.names") %>%
tidyr::gather(
key = "miRNA.id",
value = "p",
-row.names
),
by = c(
"row.names" = "row.names",
"miRNA.id" = "miRNA.id"
)
) %>%
dplyr::mutate(
gene.symbol = G_list[row.names, "hgnc_symbol"]
)
readr::write_csv(
x = cor$r %>% t() %>% as.data.frame() %>% tibble::rownames_to_column("row.id") %>% dplyr::mutate(gene.symbol = G_list[row.id, "hgnc_symbol"]),
path = file.path(out.dir, "psych.r.csv")
)
readr::write_csv(
x = cor$p %>% t() %>% as.data.frame() %>% tibble::rownames_to_column("row.id") %>% dplyr::mutate(gene.symbol = G_list[row.id, "hgnc_symbol"]),
path = file.path(out.dir, "psych.p.csv")
)
readr::write_csv(
x = cor$t %>% t() %>% as.data.frame() %>% tibble::rownames_to_column("row.id") %>% dplyr::mutate(gene.symbol = G_list[row.id, "hgnc_symbol"]),
path = file.path(out.dir, "psych.t.csv")
)
readr::write_csv(
x = psychTable,
path = file.path(out.dir, "psych.csv")
)
network.analysis.genes <- readr::write_csv(
x = psychTable %>%
group_by(miRNA.id) %>%
mutate(
p.adj = stats::p.adjust(
p = p,
method = "BH",
n = dplyr::n()
)
),
path = file.path(out.dir, "psych.with.fdr.csv")
) %>%
dplyr::filter(
p.adj <= 0.05
)
readr::write_csv(
x = PsychMasterTable %>%
tibble::rownames_to_column("row.names"),
path = file.path(out.dir, "psych.patientTable.csv")
)
readr::write_csv(
x = x1 %>%
tibble::rownames_to_column("row.names"),
path = file.path(out.dir, "psych.x.miRNA.csv")
)
readr::write_csv(
x = y1 %>%
tibble::rownames_to_column("row.names"),
path = file.path(out.dir, "psych.y.mRNA.csv")
)
readr::write_csv(
x = snp,
path = file.path(out.dir, "snp.csv")
)
readr::write_csv(
x = ge %>%
tibble::rownames_to_column("entrez.id"),
path = file.path(out.dir, "ge.csv")
)